机器

1993猫力币带机器/运营版/Gateio/区块链/数字货币交易

源码描述: 端: 域名 端: 域名 后台: 域名 管理员用户名: 密码: ( )用户可以自己注册登录体验。交易机器人对运行服务器配置要求较高, ( )观看 的效果可以使用 浏览器手机访问模式或者使用谷歌浏览器 模式查看手机端地址即可。 ( )安装包内附带批量替换软件可以将默认的锚定币( 、 )批量替换成其他锚定币,注意区分大小写。锚定币价格设定在后台 财务 管理 配置(充值单价比例和提现单价比例)。 功能简要说明: 带 、 端;均有高端 线和委托档位, 端一键封装(不是原生 代码编译版本, 分发软件打包)

Python机器学习经典实例_Python教程

资源名称: 机器学习经典实例 内容简介: 在如今这个处处以数据驱动的世界中,机器学习正变得越来越大众化。它已经被广泛地应用于不同领域,如搜索引擎、机器人、无人驾驶汽车等。本书首先通过实用的案例介绍机器学习的基础知识,然后介绍一些稍微复杂的机器学习算法,例如支持向量机、极端随机森林、隐马尔可夫模型、条件随机场、深度神经网络,等等。 本书是为想用机器学习算法开发应用程序的 程序员准备的。它适合 初学者阅读,不过熟悉 编程方法对体验示例代码大有裨益。 作者简介: 作者简介: 人工智能专家,重点关注基于内容的分析

机器学习 (周志华 著) 学习笔记 中文完整高清版_Python教程

资源名称:机器学习 周志华 著 学习笔记 中文完整高清版 第 章 引言 基本术 假设空间 归纳偏好 发展历程 应用现状 阅读材料 习题 参考文献 休息一会儿 第 章 模型评估与选择 经验误差与过拟合 评估方法 留出法 交叉验证法 自助法 调参与最终模型 性能度量 错误率与精度 查准率、查全率与 与 代价敏感错误率与代价曲线 比较检验 假设检验 交叉验证 检验 检验 检验与后续检验 偏差与方差 阅读材料 习题 参考文献 休息一会儿 第 章 线性模型 基本形式 线性回归 对数几率回归 线性判别分析 多分类学习

斯坦福大学机器学习课程个人学习笔记 中文PDF_Python教程

资源名称:斯坦福大学机器学习课程个人学习笔记 中文 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识。前四 节主要讲述了回归问题,属于有监督学习中的一种方法。该方法的核心思想是从离散的统计 数据中得到数学模型,然后将该数学模型用于预测或者分类。该方法处理的数据可以是多维 的。 讲义最初介绍了一个基本问题,然后引出了线性回归的解决方法,然后针对误差问题做 了概率解释。 资源截图:

数据挖掘实用机器学习技术(中文第二版)_数据库教程

资源名称:数据挖掘实用机器学习技术 中文第二版 内容简介: 《数据挖掘实用机器学习技术 原书第 版 》介绍数据挖掘的基本理论与实践方法。主要内容包括:各种模型 决策树、关联规则、线性模型、聚类、贝叶斯网以及神经网络 以及在实践中的运用,所存在缺陷的分析。安全地清理数据集、建立以及评估模型的预测质量的方法,并且提供了一个公开的数据挖掘工作平台 。 系统拥有进行数据挖掘任务的图形用户界面,有助于理解模型,是一个实用并且深受欢迎的工具。 资源截图:

Python机器学习实践指南_Python教程

资源名称: 机器学习实践指南 内容简介: 机器学习是近年来渐趋热门的一个领域,同时 语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和 语言两个热门的领域,通过利用两种核心的机器学习算法来将 语言在数据分析方面的优势发挥到极致。 全书共有 章。第 章讲解了 机器学习的生态系统,剩余 章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、 市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。 本书适合 程序

Java机器学习

资源名称: 机器学习 内容简介: 本书介绍如何使用 创建并实现机器学习算法,既有基础知识,又提供实战案例。主要内容包括:机器学习基本概念、原理, 、 、 等常见机器学习库的用法,各类机器学习常见任务,包括分类、预测预报、物篮分析、检测异常、行为识别、图像识别以及文本分析。 后还提供了相关 资源、各种技术研讨会议以及机器学习挑战赛等阶所需内容。 本书适合机器学习门者,尤其是想使用 机器学习库行数据分析的读者。 资源目录: 第 章 机器学习应用快速入门    机器学习与数据科学    机器学习能够解决的问题